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Abstract. We use the Bethe ansatz solution for the one-dimensional Hubbard model with
open boundary conditions and applied boundary fields to study the spectrum of bound states
at the boundary. Depending on the strength of the boundary potentials, one finds that the true
ground state contains a single charge or, for boundary potentials comparable with the Hubbard
interaction, a pair of electrons in a bound state. If these are left unoccupied one finds holon
and spinon bound states. We compute the finite size corrections to the low-lying energies in
this system and use the predictions of boundary conformal field theory to study the exponents
related to the orthogonality catastrophe.

1. Introduction

The recent advances in the understanding of boundary effects in low-dimensional quantum
systems due to the predictions of boundary conformal field theory [1-3] and the formulation
of Bethe ansatz soluble models on open lattices with potentials applied on the boundary
sites [4—7] have opened new possibilities to study the effects of correlations and quantum
fluctuations on long-standing problems such as the orthogonality catastrophe [8, 9] and edge
singularities in optical absorption experiments [10-12].

The effect of electronic correlations on the bulk critical behaviouilef 1)-dimensional
guantum systems has been studied successfully in the Tomonaga—Luttinger model which
then can be handled using field theoretical methods [13-15]. Studies of integrable lattice
models have added insights to this problem since, for example the dependence of critical
exponents on microscopic parameters and their behaviour due to lattice effects (back
scattering, Mott transition) can be computed exactly [16-18]. Similarly, one expects
additional information from studies of lattice models for interacting electrons with open
boundaries [4,19,20]. Besides giving a deeper understanding of previous predictions,
these lattice models have features not easily included into the continuum description: local
chemical potentials in the former lead to a sequence of bound states (see, e.g. [21]) which
are expected to influence the critical properties of the boundary.

In this paper we consider the Hubbard model on a chairl ddites subject to an
additional chemical potentig at the first site. The Hamiltonian is given by

L-1 . L . ho~ . . .
H= —U;l(c},acj-i—l,a +ho) + 4u ;n.mnw + uN — i(N —2N}) — p(N1s + Ny ).
(1.1)

1 E-mail address: bed@itp.uni-hannover.de
i E-mail address: frahm@itp.uni-hannover.de
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For p = 0 this model has been solved by Schulz using the coordinate Bethe ansatz [4].
Recently, this solution has been extended to non-vanishifitQ] and the integrability of

the model has been established in the framework of the quantum inverse scattering method
[22]. The Bethe ansatz equations (BAE) determining the spectrum of (1.1) ¥ tparticle

sector with magnetizatioM = %Ne — N, read [19]

&2 s, (k) = [ [ eaun — Apeau(nj +2p)  j=1,..., N,
=1
N, N, (1.2)
[ Tezea = mp)e2iha + 1) = [ [ eaua = Ap)eauGa +2p) @ =1,...,N,
[
with e,(x) = %2 sp(k) = (11;’;‘3;%’) andn; = sink;. The energy of the corresponding
. -
eigenstate of (1.1) is
N, h
E=Y" (u -5 ZCosk,) +hN,. (1.3)
j=1

Using the global spin- ang-pairing SU(2) symmetry of the Hubbard model the Bethe
states extended by those obtained by application of the corresponding raising operators
have been shown to form a complete basis of the Hilbert space of the system [23]. A
non-zero boundary potential destroys thesymmetry of the model and the question of
completeness should be considered again. Numerical solutions of (1.2) for jsrelatiw

that there exist complex combinations of twaand onei which coincide with one;-pair

in the limit of p — 0. In the following we only consider the ground state and the low-lying
excitations of the system, so we can neglect these kinds of complex solutions as they belong
to the highly excited states of the system [24]. However, for sufficiently strong attractive
boundary potentialp > 1 we find that there exist other complex solutions which turn out

to correspond to bound states in these potentials (note that these states do not appear in
the casep < 1 studied in [19]). These solutions need to be considered to obtain the true
ground state of the system. We find that despite the presence of several complex parameters
in the ground-state configuration the low-energy spectrum of the many-particle system can
still be described in the Tomonaga—Luttinger picture equivalent todwe 1 conformal

field theories. The casg > 1 will be studied in detail in the next section.

2. Boundary bound states

From a physical point of view it is clear that the ground state of the model contains a
bound state at the first site for sufficiently large Numerical solutions of the BAE show
that this is indeed the fact fop > 1 where a complex quasimomentumis present in
the ground-state configuration. A similar situation has been found iXti& Heisenberg
chain with a boundary magnetic field [21,25] and in a continuum model related to the
Kondo problem [26].

Increasing the boundary potential further we find that additional complex parameters
are added to the gound-state solution of (1.2). In the thermodynamic (Imit> oco) we
have to distinguish three different regions where the BAE describing the ground state are
modified due to the presence of these complex foots

1 In principle one is free to leave the bound states empty. This gives rise to another continuum of states. These
states become important if one considers, for example, multiple Fermi edge singularities in the presence of bound
states [12, 27].
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Ll<p<pi=u+1+u?

Ny
2 g (k) = [ | eau(ny — 2p)eau(n; + 1p) j=1....N.—1
p=1
i = (2.1)
eZufzt()"a)eZquZt()‘a) 1_[ ez, (Ag — nj)eZM (Ae + 77]) = 1_[ eq(Ag — )V/S)e4u()\a + )‘ﬁ)
i=1 =1
! B#a
o = 1, ey Nl
with the complex solutiorky, = iln(p) (with exponential accuracy in the limit — o)
ands = —isinky, = %(p — %) < u. The contribution of this bound state to the energy (1.3)

is given byE; = —p — 71) +u— % This complex solution corresponds to a charge bound
to the first site, as the quasimomentparametrize the charge part of the states.
. p1<p<p2=2u+~v1+4u?

Larger values of the boundary potential lead to an additional complex solution in the spin
part: Ay, =i(t —u) (¢ > u in this region) and the following modified BAE:

N, -1
2 s, (k) = ean-2mpea ) [ | e2unj — Ap)eau(n; + 2p)

p=1
j=1...,N,—1
Ne—1 N1 (2.2)
1_[ eZu()\a - nj)eZM()La + 77]) = €22 ()‘ot)eﬁu—Zt()\a) 1_[ €y ()\a - )Lﬁ)e4u()\oz + )\ﬂ)
j=1 p=1

B#

oz:l,...,Nl—l.

Again, this state can be interpreted as that of a charge bound to the surface. The physical
excitations in the spin sector—so-callspinons—correspond tdolesin the distribution of
spin rapiditiesh which are still real.

. p > p2

For boundary potentials larger than the Hubbard interagtidn a pair of electrons forming
a singlet is bound to the surface, parametrizediRy = sinky, — iu = sinky,_1 + iu =
i(t — u). The resulting BAE are

2 s, (kea—au () = ea ) [ eaunj — hpdean +2p)  j=1,..., N =2
=1
N,—2 N -1
[T e2uta —neaOa+n) = [ eantha = 2p)eaha +2p)  a=1...,N -1
j=1 B=1
B#

(2.3)

The energy of the second complex solution_1 is given by E; = —2,/1+ (t — 2u)? +

h

"—=73.
Note that region | is already realized in the ferromagnetic case with fsglectrons

only. Ast = u (p = p1) the index of the first factor in thé-equation of (2.1) changes
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the sign, allowing for the complex-solution. A similar change occurs in (2.1) foe= 2u

(p = p2) leading to the second compléxsolution. No such point exists in (2.3), hence

no further complex solutions are expected in the ground state—in perfect agreement with
the physical intuition.

Recently, the BAE for the model with a boundary magnetic fielep1(nyy — n1y))
applied at the first site have been constructed [28,29]. This field induces an additional
phase factore,,_2 (1) in the second equation of (1.2) which cancels the first factor in
(2.1) (up to a sign). As a consequence, we do not expect another complex solution to exist
in the ground state besides the first one for this case.

Using standard procedures the BAE for the ground state and low-lying excitations can
be rewritten as linear integral equations for the densjti€g) and p, (1) of real (positive)
quasimoment&; and spin rapiditieg.,, respectively. Identification of positive and negative
k and A allows us to symmetrize the resulting equations with the usual result

1 10 ’

Pc _ T + ch 0 Cog“lzu(ﬁ _)‘)) (pc)

= A + * . 2.4
(Ps ) < 202 ) (aZM A—=n)  —aa(—1) Ps (2.4)
Here we have introduced, (x) = %W and f g denotes the convolutioﬁfA dy f(x—

y)g(y) with the boundarieg, andig in the charge and spin sector, respectively. The latter
are fixed by the conditions

ko 2IN,—60(p—1) —0(p — 1
d p — [ (p )L (p—p2)] +
—k
0 (2.5)
/*0 2[N,—0(p—pp] +1
di Ps =
o L

whered(x) is the Heaviside step function. The driving terms of thié.-corrections in the
different regions are given by

. 1 coskp — p?
0
k) = — — coskay, 6(p — pl) cosk y—
pelk) = az,(n) + 22+ 1—2pcosh) T (p — p1) cosk[az (1) + aau—2 ()]
(2.6)
for the charge sectprand
0 p<1
N azy—2 (M) + a2 (A |
200 = aa () + 2u—2r( 2ut2r (A) 2.7)

—az 2 (A) — agu—2: (1) Il
0 11|

for the spin sector. In terms of the dressed energiesde; which satisfy the same integral
equations as in the Hubbard model with periodic boundary conditions:

h ’
g\ _ (m—3—2cosk 0 az,(m—2") &
(8s) - ( " ) - (azu(/\ — ') cosk’  —ag, (A — )J)) * (85) (2.8)

the energy of the state can be expressed as:

E 1 1 1 (h ek
Lt T feto( ) =2 [
[Tt et (L) 2).,, " @

ko )\0
+21L[ f dk £, (k) 52(K) + f . esam_?(x)]

ko —Xo

t Note that the index ofis,—2, changes sign gp = py.
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1 h
2L [ (n+ 5 5~ 2) +20(p — DE1 +2h0(p — p1) + 20(p — Pz)Ez}

‘o (;) (2.9)

3. Ground-state expectation value oflN;

The ground-state expectation values for the occupation of the boundaryNsjtecan be
calculated from the identityN1> = —aE/ap With (2.9) we obtain

ko ~0 ~0
(N1) = —1[ dh e, () 222 [T g 2
2 —ko op —Xo op
+29(p—1)81+29(p—p2)Ez]. (3.1)
p ap

In absence of a bulk magnetic fieldthe ground state of the Hubbard model is known to
be a singlet (for even particle number) correspondingge= co. In this case the system
of integral equations (2.8) can be reduced to a scalar one

e.(k) = u — 2cosk + dk/ G v(n —n') cosk’e. (k") (3.2)
—ko

with (y > 0,y 4+ 2z > 0)

G0 = 1Re Syt M) tw(ty a2
4 4y 2y 4 4y 2

e*§|60|
G* =— 3.3
v@) 2cosh(3w) (3:3)
(V¥ is the digamma function). We obtain
d0E, JIE>
(Ni)=—0(p—1D——~ —0(p—p2)
ap ap
Vp(k) P < 1
k 0 2u—2, 2u+2t
_% ke ] PR+ o (qu ‘(n) + G5, (p)cosk 1, I
—ko
8
Yp(k) + p (az:(n) — az-4.(n)) COSk I
(3.4)
with y, (k) = % In the limit of p — oo only the the first two parts survive

and we get the expected resuN;) = 2. Some numerical results are shown in figure 1.

4. Finite size corrections

Following [30] we can calculate the finite size spectrum of the model, reproducing the result
of [19]:

TV, 1
E=L e o [(AN? —69)Z, — (AN — 05 Z, ] + N
eoo+foo+L { 24+2det2(Z)[( c—0) (ANg —0,)Zcs]" + C}
TV 1
el 4 T [(AN°-=6%)Z.,. — (AN® —6¢ ZY62+N+}.
L { 24 2det2(Z)[( s ) (AN = 0)Zsc] s

(4.1)
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Figure 1. Ground-state expectation value &f as a function of the boundary potentialfor
u = 1 and several electron densities (a) fixed densityn, = 0.1, (b) n, = 0.5, () n, = 0.95

and @) several values of.

Here N, are non-negative integers counting the number of particle hole excitations at the
Fermi points, the Fermi velocities are given by = fp(]f/?(:) and v, = &%) 7 s the

dressed charge matrix
_ ch ch _ scc(kO) ssc(kO) !

Z= (Zxc Zss) N (écs (A0) ";:ss ()\0)) (42)
given in terms of the integral equation
(Scc(k) ésa(k)) _ <l O) + ( 0 azy (’7 - )‘/) )

Ees(L) & (M) ~\0 1 az, (A — 7]/) cosk’ —am (A — 1)
Ecc (k) &sc(K)
* (sm W) & (M) ' (4-3)

The AN?, are given byAN? = N, — Ln, andAN? = N| — Ln, wheren, andn, denote
the total density of electrons and spjnelectrons of the reference state which we define

through

7ps(ho) "

ko Ao
ne =3 / depZ0)  ny=3 [ dpP0). (44)
—ko

7)\‘0

Here o should be computed from (2.4yithout the /L terms, i.e.p = 0 (note that
this choice differs from that used in [19]). This choice implies that for a given boundary
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condition AN? = ¢, are non-zero in the corresponding ground state. The gififtsare
due to thel-terms in (2.4):

ko
05 = ;( ) dkp. —1+20(p —1)+20(p —p2))
—Ko
i (4.5)
05 = ;( X di ps —1+29(p—p1)>
—A0
with p. and p, denoting the solution of (2.4) without thé driving term. Hence, the
finite size spectrum (4.1) determining the bulk correlation functions [16] can be written in a
manifestly particle-hole symmetric form by introducingV?, = AN +65+, whereAN?
denotes the change in charge and spin as compared with the ground state (see also [31, 32]):

E=Lew+f +””C{ Ll ARz, - ARz ]2+N+}

= Le Yy N ss s Locs c
FOOT T L | 24 2detzy T

TV { 1

. —_ _|_ -

L | 24 2det(z)
These expressions simplify in certain limits (see also the corresponding discussion for

the periodic model in [16, 17]):

[ANPZee = ANJZ, P + Nj} : (4.6)

4.1. Zero magnetic fieldif = o)

The spin part of the equations can be eliminated by a Fourier transformation with the result
that the matrixZ depends on the scalar dressed chdrgeé (ko) only [30]:

Zee  Zes E 0 )
/ = = 4.7
( Zse Zss ) ( %%‘ 7«/2§ ( )

which is defined as the solution of
ko

Ek) = 1+/ dk’ COSk’G%Z(n — nHEK). (4.8)
—ko

Furthermore, one finds the relaticﬂ;j = %9;, which allows us to rewrite the finite size
spectrum (4.1) as

TV, 1 1 0 2 n
E=Lex+ foo+ 2 {—24+2$2(ANC—91§) + N,

T, 1 1 2
+ {—24+<ANS—2ANS) +Nj}. (4.9)

The functiong, in (4.5) satisfies the integral equatigp(k) = o.(k)+cosk ff‘,’m dk’ Ggg(n—
n") (k") with driving term

3 1 coskp — p? 0
(k) = = -G cosk
pe(k) P Jryr(p2+1—2pcosk) 24 (1)
0 p<l1
+cosk § G272 () + G2+ () (A (4.10)

az (n) — az—4,(n) Il
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4.2. The ferromagnetic casgy= 0)

In view of the ferromagnetic case with only spinelectrons, the finite size spectrum is
given by

E=Lel +fl+

d 1.1 0_ gc 32 +
7 {—24+2(ANC =08 ,)°+ N, } (4.11)

and the shifps = can be given explicitly as a function of the boundary field and the electron

density (the Hubbard interaction is not relevant in this state):
1 e
P+ 1tan”” ) +o(p —1). (4.12)

p— 2

c _
GT,P -

! ! arctan
2 7

5. Orthogonality exponent

Recently, the predictions of boundary conformal field theory regarding the relation of the
finite size corrections in the spectrum of a gapl€ks+ 1)-dimensional quantum system

with various boundary conditions and scaling dimensions of certain boundary changing
operators have been applied to various problems such as Fermi edge singularities in Luttinger
liquids and the related problem of Anderson’s orthogonality catastrophe in these systems
[2,12,31,27]. Here we want to apply these ideas to study the second problem, namely the
system size dependence of the overlap of the many-particle ground states corresponding to
different choices of the boundary potential. For this we have to consider the opéxator
switching on the boundary chemical potentjal Following [12] we apply the conformal
transformationy = Le™ to obtain a relation between the correlation functions in the infinite
stripw = u +iv (0 < v < L will be identified with the spatial and with the (complex)

time variable, the Fermi velocity is set to unity for this argument) with those on the half
planez = v +ir, r > 0. The correlation function of the primary boundary opera@rin

the half plane is:

1
(11— 12)%7
Applying the conformal transformation we obtain the correlation function on the strip which
is given by

(AA|O, (1) Ol (12)|AA) = (5.)

2w
(AAIO, O}l a) ~ (7 )" e (5.2)

for large Au = u, — u;. Above we denoted the ground state of the system with vanishing
boundary fields byyAA). The last expression can be evaluated by inserting a complete set
of eigenstate$BA; n) of the system with chemical potential at the first site (boundary
condition ‘B’) giving:

TT\2Xp nxp Au
Ve

> I(AAIO, B A mPe Bl —E A (T (5.3)

L

For the operator considered here the form factar|O,|BA; 0) is non-zero and the
exponentx, can be read off to be

L
xp = ;(Eg/* — E{™. (5.4)

From (5.3) we can identify, as the orthogonality exponent:

1\"
I(AAIO,|BA; Q) = [(plO)| ~ <L> (5.5)
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where|p) is the ground state of the system with boundary chemical potemtial

Using the results of the previous section we can now calculate this exponent from
the finite size spectrum (the necessary generalization from (5.4) to the present case of a
two-component Luttinger liquid with different Fermi velocities in the respective sectors is
completely analogous to the one in the periodic Hubbard model [16]). The key to the
correct identification of the orthogonality exponent is the correct choioﬂ]tbfs in (4.1):
as discussed above the ground-state endigyy is obtained by takingAN?| = 020 If
we compare this energy witB{'2 it is crucial to compute the finite size corrections with
respect to thesamereference state. Sing®) and |p) need to be states with the same
particle numbersvV, and N, this implies that the correct choice @fNSS in E48 is again
07,
: 0The easiest way to check that this choice gives the desired answer is to use the
ferromagnetic case: From (4.11) we obtain

1/1 p+1. mn n 2
c \2 __ e e
(9T p=0— 07 ,)" = > (n arctan(p — 1tan > ) + > —0(p — 1)) (5.6)

approachingx, = %(ng — 12 in the limit p — oco. In this ferromagnetic case the
many-particle wavefunction is simply a later determinant of the one-particle functions
W, (x) o sin(kx) — psink(x — 1)). The product{p|0) can be evaluated numerically for
finite systems leading to exponents which are in perfect agreement with (5.6).

For the case of vanishing bulk magnetic field the finite size corrections are given by
(4.9). ChoosingAN? = 65_, = 265_, = 2AN? we find that there are no corrections from
the spinon sector and the orthogonallty exponent becomes

‘o= 05 (5.7)

Xp =

25205
with 67 given in (4.5). For very largp — oo we obtainx, = ?12(2—;16)2. As we approach

half filling n, — 1 the exponent becomasg = 9(?7;”2) In figure 2 we present numerical
data forx, as a function ofp for several values ot, andu = 1.

In the general case of non-vanishing magnetic fields the exponent is given as the sum
of the respective charge and spin peyt= x. + x, with

Xe = (65— — 05)Zss — (030 — 03) Zes]?
2de€(2) 5.8)
; —035)Zee — (0°_y — 09 Z, )2
Xo= t2(Z)[( ) Zee — (05— — 09 Zic]
Again, this expression simplifies fgr — oo:
2 1) 25 — Zes)? + (Zee — (2 — 10) Zy)?
||m xp — (( ne) sS L;S) +( cc ( ne) AC) . (59)

p—>o0 2det(z)
In figure 3 the exponent, is shown as a function op for several magnetic fields.
Finally, let us remark on the effect of a second boundary poteptiaht site L: the
BAE (1.2) are modified by another factgy, (k) leading to additional shift;:* — 6 °_, in
the expressions for the finite size spectrum (4.1). In this case the orthogonallty exponent

XpipL

1 \*rarL
(p1pL100) ~ <L> (5.10)

cannot be obtained by simply adding the new shifts. Instead, numerical studies of the
ferromagnetic case (see figure 4) suggest that the expapgntis given by

Xpip, = Xpy T Xp, (5.11)
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2.0

x 1.0 i

0.5+ e

10.0

Figure 2. Orthogonality exponent as a function of Figure 3. Orthogonality exponent as a function of
the boundary potentigb for several electron densities the boundary potentigb for electron density:, = 0.1

andu = 1. andu = 1. The heavy curve is the exponent for
the ferromagnetic case. The other ones have different
magnetic fields:, starting withs = 0 (broken curve)
up to the critical magnetic field. (largest exponent for
p —> 00).
0.060
A LYYV
A A A A A
0.050 1 oooo o g 5
X
=1/4
0.040 | AMNe
oNe= 1/3
vne=1/2 Figure 4. Numerical results for the exponent
Y WVVY v v v v x08.05 In the ferromagnetic case for three electron
0.030 ‘ densities andu = 1 as a function of AL.

i.e. the effects from the two boundaries are additive.

0.000 0.010 0.020 0.030 0.040 0.050

The plotted exponent is calculated from the ratio
(p1pL100)|L/{(p1pLI00) Ly1/n, -

o © o J 0
ANB S A B A A B A

Figure 5. Conformal mapping of the infinite half plane with = % In(§) to the strip.

In the framework of boundary

conformal field theory this result is a consequence of the fact that changing the potential at
both boundaries is not possible by the action of a single boundary changing op@rajor

but rather two operator®,, andO,, as becomes obvious when one switches back from the
system on the strip to that on the half plane (see figure 5). Hence, the correlation function
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considered is

{AA|O,,(t)O,, ()0 (22O} (x)|AA)| (5.12)

which gives (provided thaltr; — 7/| < |71 — 2[)

(AA|O,, (O}, (HIAMI(AAID,, (1)), (22)|AA)| =

1 1
(t] — TP (11 — )%

(5.13)

for the leading asymptotic of the correlator in the semi-infinite plane. Conformal mapping
of this expression to the strip results in (5.11).
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